RECRUIT BETTER.
At the School of Engineering and Applied Science (SEAS), we strive to provide students with valuable resources and access to academic, corporate, non-profit, government, and professional development opportunities. By connecting students, faculty, staff, alumni, and employers, we create a talent pipeline that highlights GW graduates as leading contributors to the global community.

HIRE BETTER.
Students in mechanical and aerospace engineering utilize a wide range of experimental, fabrication, and computational facilities available to them during their graduate studies at the George Washington University. These include a small vacuum chamber for space thruster design; facilities for the production of carbon nanotubes; and tools for measuring flow velocities in gaseous and liquid media. The Department of Mechanical and Aerospace Engineering is home to one of the nation's leading fluid dynamics research programs. Consequently, our graduate students are able to apply research solutions toward a variety of fields, including transportation, energy, medicine, weather prediction, and more.

ENGINEER BETTER.
At SEAS, our students pride themselves on developing cutting-edge research and innovation both in and out of the classroom. Through its institutes, centers, and special programs, SEAS extends academic investigation throughout the greater GW campus, professional industry, and society as a whole. By fostering an environment in which students apply technology and research findings to all areas of instruction, students are well prepared for rewarding and productive careers as engineers, applied scientists, and computer scientists.

NUMBER OF GRADUATE STUDENTS: 144
NUMBER OF UNDERGRADUATE STUDENTS: 225

AREAS OF FOCUS
Graduate
- Aerospace Engineering
- Design of Mechanical Engineering Systems
- Fluid Mechanics, Thermal Sciences, and Energy
- Industrial Engineering
- Solid Mechanics and Materials Science
- Structures and Materials Science
- Structures and Dynamics
- Robotics, Mechatronics, and Controls

Undergraduate
- Mechanical Engineering
- Aerospace Engineering
- Biomechanical
- Medical Preparation
- Patent Law
- Robotics
RESEARCH FACILITIES, PROJECTS & PARTNERSHIPS

At GW, mechanical & aerospace engineering students actively collaborate with peers and faculty on research, which is conducted across several facilities on and off campus.

RESEARCH AREAS
- Aerospace Engineering
- Design of Mechanical Engineering Systems
- Fluid Mechanics, Thermal Sciences, and Energy
- Robotics, Mechatronics, and Controls
- Solid Mechanics and Materials Science

LABORATORIES
- Bioengineering for Nanomedicine and Tissue Laboratory
- Biofluid Dynamics Laboratory
- Computational Aerodynamics for Hydrodynamics
- Multiscale Computational Mechanics Laboratory
- Robotics and Mechatronics Laboratory
- Smart Systems Laboratory

Department Annual Research Expenditure: $4.3 million (2017)

FACULTY

SEAS students benefit from instruction, interaction, and collaboration with faculty who are on the cutting-edge of research and are leaders in their fields. More than two-thirds of our recently hired SEAS faculty members graduated from top 20 engineering and computer science programs in the U.S., or top programs across the world.

“I am excited to be a part of the transformation of the MAE Department at GW – both in terms of growth and ever-increasing quality. We have hired over a dozen energetic and enthusiastic new faculty members over the past five years, and we have recruited top notch students.”

- Dr. Michael Plesniak, Professor and Department Chair, Mechanical and Aerospace Engineering

CONTACT US

W. Scott Amey Career Services Center
School of Engineering and Applied Science
Science & Engineering Hall
800 22nd Street NW, Suite 2730
Washington, DC 20052

seascareers@gwu.edu
202-994-4205

careers.seas.gwu.edu

The George Washington University does not unlawfully discriminate in its admissions programs against any person based on that person’s race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, or gender identity or expression.