COMPUTER ENGINEERING (B.S., M.S., PH.D.)
RECRUIT BETTER. HIRE BETTER. ENGINEER BETTER.

RECRUIT BETTER.
At the School of Engineering and Applied Science (SEAS), we strive to provide students with valuable resources and access to academic, corporate, non-profit, government, and professional development opportunities. By connecting students, faculty, staff, alumni, and employers, we create a talent pipeline that highlights GW graduates as leading contributors to the global community.

HIRE BETTER.
Students in computer engineering gain up-to-date knowledge and skills in the advances of computer systems architecture and networking, as well as the rapidly growing use of superscalar microprocessors, real-time embedded systems, VLSI, and ASIC design modules. The program is designed in a way that enables students to focus on either computer architecture and high-performance computing or microelectronics and VLSI systems.

ENGINEER BETTER.
At SEAS, our students pride themselves on developing cutting-edge research and innovation both in and out of the classroom. Through its institutes, centers, and special programs, SEAS extends academic investigation throughout the greater GW campus, professional industry, and society as a whole. By fostering an environment in which students apply technology and research findings to all areas of instruction, students are well prepared for rewarding and productive careers as engineers, applied scientists, and computer scientists.

2017 STUDENT ENROLLMENT
Graduate: 41
Undergraduate: 36

AREAS OF FOCUS
Graduate
- Computer Architecture and High Performance Computing
- MEMS, Electronics, and Photonics

RESEARCH FACILITIES, PROJECTS, & PARTNERSHIPS
At GW, computer engineering students actively collaborate with peers and faculty on research, which is conducted across several facilities on and off campus.

RESEARCH AREAS
- Applied Electromagnetics
- Communications and Networks
- Computer Architecture and High-Performance Computing
- Electrical Power and Energy
- MEMS, Electronics, Photonics
- Signal and Image Processing, Systems, and Control
LABORATORIES
- High-Performance Computing Architectures and Technologies Laboratory
- High-Performance Computing Laboratory
- Lab for Intelligent Networking and Computing
- Magnetic Material Testing Laboratory
- Magnetic Refrigeration Research Laboratory
- Magneto-Optics Laboratory
- Microwave Laboratory
- Orthogonal Physics Enabled Nanophotonics Lab
- VLSI and MEMS Systems Design and Testing

CENTERS & INSTITUTES
- GW Intel Parallel Computing Center
- Institute for Massively Parallel Applications and Computing Technologies (IMPACT)
- Institute for Magnetics Research
- Institute for MEMS and VLSI Technology

Department Annual Research Expenditure: $2.5 million (2017)

FACULTY
SEAS students benefit from instruction, interaction, and collaboration with faculty who are on the cutting-edge of research and are leaders in their fields. More than two-thirds of our recently hired SEAS faculty members graduated from top 20 engineering and computer science programs in the U.S., or top programs across the world.

“The ECE faculty are working on several interesting research topics. In addition, they are teaching several courses that are important to the industry, which helps graduates find adequate positions in the industry and at other employment agencies. The faculty and the students enjoy friendly, collaborative, and productive relationships”

- Dr. Mona Zaghloul, Professor, Electrical and Computer Engineering

CONTACT US
W. Scott Amey Career Services Center
School of Engineering and Applied Science
Science & Engineering Hall
800 22nd Street NW, Suite 2730
Washington, DC 20052
seascareers@gwu.edu | 202-994-4205
https://careers.seas.gwu.edu

The George Washington University does not unlawfully discriminate in its admissions programs against any person based on that person’s race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, or gender identity or expression.